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We describe an algorithm for simulating the evolution of an assembly of particles which is 
increasing in number. It is based on the use of the Monte Carlo method and a rmor- 
malization procedure which allows the mapping of the growing assembly into another con- 
sisting of fewer particles. The results of test calculations are presented and error ana!ysis of the 
results are included. ‘1. 1986 .Academic Press. Inc. 

I. INTRODUCTION 

The average-kinetic description of the evolution of an initial number of particles 
interacting via binary collisions with a background medium (and/or among them- 
selves) is given by the time dependent distribution of particles in phase-space, 
J~V, r, I). In general, the particles may be under the influence of external fields. The 
phase-space distribution can, in principle, be obtained from a kinetic equation of 
the Boltzmann type [ 1, 21 or from Monte Carlo simulation [3,4]. At present, the 
Monte Carlo approach has a number of advantages over the kinetic equation 
approach: it is relatively easy to implement a 6-dimensional phase-space simulation; 
it can be easily modified to accomodate any number of particle-background interac- 
tions: and it provides considerable physical insight into the evolution of the particle 
assembly, including fluctuation phenomena. 

In the Monte Carlo approach, the dynamical evolution of a small number of par- 
ticles (from one to a few thousand)) is simulated. These particles are representative 
of the system under investigation. The accuracy of the results depends on the num- 
ber of particles used in the simulation [IS]. A major drawback of this approach is 
that the simulation takes a considerable amount of time, even when very few par- 
ticles are used. The simulation time becomes particularly prohibitive when the num- 
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ber of particles in the system increases with time, through interactions with the 
background. Normally, the particles being generated are neglected in a simulation, 
so that the total number stays constant. This procedure is not suitable if the effect 
of the new particles on the total distribution is sought, and if the dynamics of the 
evolution depends on the total number and distribution of the particles. An exam- 
ple of this situation is the space-time evolution of an initial number of electrons 
immersed in a background gas of atoms-molecules and influenced by external and 
space-charge fields. In this case, ionization of the background gas by electron 
impact rapidly increases the total number of electrons (an electron avalanche). The 
evolution of the electron assembly is affected by the space-charge fields generated 
by the growing electron and ion populations. To determine the space-charge field, a 
knowledge of the total population is necessary. 

We have developed a Monte Carlo technique that can be used to simulate the 
evolution of an assembly of particles growing in number. We have applied the 
technique to the simulation of the avalanche growth of an initial number of elec- 
trons to very large numbers. From the simulation, the phase-space distribution of 
the growing assembly has been determined. Moreover, with our technique we can 
investigate regions of the distribution where the visitation frequency is low, such as 
the high energy tail. Poor statistics in this region have been a limitation when a 
small number of particles have been used. 

The Monte Carlo technique is described in the next section. This technique can 
be applied to any system of particles growing in number, and interacting via 
binary collisions with a background medium. To illustrate the capabilities of the 
procedure, in Section III results are presented from simulations of an electron 
avalanche in nitrogen. An error analysis is also given in this section. Concluding 
remarks are given in Section IV. 

II. THE MONTE CARLO TECHNIQUE 

Initially, the phase-space distribution of the system of particles under 
investigation is specified. An initial number of test-particles are then selected that 
are representative of the initial distribution. That is, test-particles are selected at 
random, whose position and velocity are determined from the given phase-space 
distribution. The total number of test-particles may equal the actual number of par- 
ticles in the system if the simulation time for this number of test-particles is not 
prohibitively large. For example, in a VAX-780 computer the simulation time for 
more than 8000 test-particles becomes excessive. If the number of test-particles is 
taken to be less than the actual number, a “weight” is assigned to each test-particle. 
The sum of weights over all test-particles equals the total number of particles. The 
procedure for assigning weights is discussed below. 

The simulation of the evolution of the system of test-particles is broken up into 
time sections of length t,. The test-particles present at the beginning of a time sec- 
tion are denoted as “primary” test-particles. The properties (position r, and 
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FIG. i. Sequence followed in tracking all test-particles created by the passage of one .Cprimary” test- 
particle. This procedure is sequentially applied to all primaries. 

velocity v) of each of these “primary” test-particles are updated to the end of a time 
section (how this is done is discussed below}. The properties of secondary test-par- 
ticles that may have been created by the passage of a primary are also updated to 
the end of the same time section. This is done for all secondaries originating from 
one primary (including secondaries produced by the passage of other secondariesj 
before going on to the next primary. This is illustrated in Fig. 1. After all primaries 
(and the secondaries created by them) have been tracked to the end of a time sec- 
tion a new one begins with ail test-particles present at the end of the previous sec- 
tion as “initial” test-particles. This procedure is repeated in each section until the 
desired final time, a multiple of ts. 

Since the position and velocity of each test-particle are known at any time? the 
assembly is completely characterized. In each time section, ah desired information 
about the system can be calculated. The fluctuation in each quantity (i.e.? variation 
from section to section) can also be computed. More will be said about the 
sampling of information in the next section where an example is discussed. 
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Updating the Properties of the Test-ParticIes 

The trajectory of a test-particle in phase-space consists of a number of free flights 
and scattering events. It is assumed that the test-particles obey classical equations 
of motion during their free flights. That is, between scattering events the position 
and velocity of a test-particle is determined from the equations: 

%(t)=q(t), E$)JL, 
1 

where ri( t), ui( t), and Mi are the position, velocity? and mass, respectively, of the ith 
test-particle, and Fi is the force on it. Fi may be position and time dependent. The 
initial conditions for Eqs. (1) are the position and velocity of the test-particle 
immediately after the last scattering event. 

To determine the length of a free path (or the time between scattering events), we 
have used the “null collision” or “self-scattering” technique [6, 7, 8, 91. In this 
technique, the time between scattering events is determined from the equation 

where Rl is a uniformly distributed random number in the interval [O, 11, N is the 
density of target (background) partic&, and QC is greater than or equal to the 
minimum constant that makes QnU,,(o) positive for all LJ in the expression 

Q+(u) = Qcu-’ = Qdol+ Qnd~h (3) 

Qnti,,(u) is the cross section for a lictitious process (null process) which causes no 
changes in the properties of the test-particle; QT is the total cross-section for test- 
particle-background scattering (assumed to be speed dependent); and Q+ is the 
effective total cross section after introduction of the null process. Note that Qk is 
proportional to ~7~‘. 

Although this approach increases the frequency of scattering (since Qi > QT j, the 
time between scattering events is much easier to compute (via Eq. (2)) and helps 
reduce the overall computing time. The alternative [4, lo] would be to compute tc 
from the expression 

3 (4) 

u(t) in the above equation is obtained from Eq. (1). 
Once the length of a free path has been determined (Eq. (2)j, the velocity and 

position of a test-particle can be advanced according to Eq. (I ) to the end of the 
free path. At this time, the test-particle undergoes a scattering event. Let Ri(,u) be the 
probability for the occurrence of the ith scattering process, where 
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Qi is the total collision cross-section for the zth process (including the null process). 
and Q+ is defined by Eq. (3). Note that 

where ti is the total number of processes including the nuli process. The type of 
scattering event that has occurred is determined using a uniformly distributed 
random number R2 (in the interval [O, 11) and the transformation, 

j-1 

RI= 1 Pi+SP, 
i= 1 

(5) 

where 0 c S< 1. For a given random number R2, the $h process that satisfies 
Eq. (5) is assumed to have occurred. The properties of the test-particle are modified 
according to the process. Subsequently, the time to the next scattering event is 
determined from Eq. (2), and the whole procedure is repeated. 

h4apphg the Particle Assembly 

A problem encountered in all Monte C!arlo calculation is that the number of test 
particles used in the simulations must be small, if the computation times are not to 
be prohibitive. This limits the techniques to systems where the number of particles 
do not grow. To circumvent this limitation, we have developed a renormalization 
and weighting procedure which maps the test-particle assembly into another con- 
sisting of fewer test-particles. This mapping is done to keep equivalent energy dis- 
tributions between the assemblies and maximum resolution in the high energy tail. 

The first mapping occurs at the end of the time section for which the total num- 
ber of test-particles exceeds a predetermined value, NC (usually 8000). The 
equivalent assembly consists of a predetermined fewer number of test-particles LV( 
(usually 5,000); where each test-particle may be representative of more than one 
real-particle, with the number being determined from their weight. Thus, each test- 
particle is detined by its velocity, position, and weight. When an event occurs where 
a new test-particle is created, the same weight as the parent is assigned to it. The 
mapping is subsequently done at the end of each time section for whicht the total 
number of test-particles exceeds the predetermined value, Nt (i.e., 8000). The length 
of each time section is adjusted so that the population in the section does not grow 
by more than the difference between NI and Ni. 

The low frequency of visitation of the test-particles to the high energy tail of the 
distribution limits the information which can be extracted about the assembly m 
this region. This is particularly so if a small number of test-particles is used in the 
simulation or if the mapping mentioned in the previous section is done umformlyy. 
To maintain the statistical information on the high energy tail commensurate with 
the effective number of test-particles forming the assembly at the time of the map- 
ping3 the energy distribution is divided into three sections, and each is mapped 
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using different factors for the test-particle-to-particle ratio; i.e., the test-particle 
weights. 

The procedure is carried out as follows: lirst! the test-particles representing all the 
particles in the assembly are sorted in order of decreasing energy. Second, the total 
number of test-particles before renormalization, Nt (usually 8,000 by the end of the 
time section), is partitioned into three groups, Let Ni, NZ, and N3 correspond to 
the number of test particles in the three groups with energies in the range 0 < .s < si, 
&l<&<E2, and &l=-~?, respectively. s is the energy of a particle. The mapping is 
accomplished by using Tl, TI, T3 new-test-particles with weights W,, W2, W3, 
respectively, to represent the Ni, N?, N3 group of “old” test-particles, respectively. 
That is, 

and 

with Wi (i= 1,2,3) and Ti (i= 1,2,3) chosen, we can find Ni (i= 1,2,3) and si 
i= 1,2). Typically, the sets (WI, Wz, Wj) and ( Ti, Tz, T3) are chosen to be 
(1.8, 1.6, 1.2) and (2000, 2000, 1000) respectively. If we denote the weight of thejth 
“old” test-particles by Wi (relative to the actual number of particles), its new weight 
relative to the actual number of particles is W,!’ = WjWi, where i= 1, 2, or 3, 
depending on the group it belongs to after the mapping has been carried out. 

Finally, the last X3 test-particles with the highest energy among the set of N3 are 
mapped 1 :l. XX is typically 100-200 test-particles. The rest of the Nj - X3 old-test- 
particles are then mapped onto the remaining T3 - X3 new-test-particles. The num- 
ber of “old” test-particles being represented by these T3 -X3 test-particles is 
calculated and used as their new weight factor. 

This procedure in effect “enhances” the statistics of the high energy tail in that 
the visitation frequency is equivalent to that obtained with the effective assembly 
while allowing to follow a smaller number of test-particles. Note that to track the 
effective assembly would be prohibitively expensive. The validity of the procedure 
has been conlirrned by the fact that when the assembly reaches an equilibrium state 
(see Sect. IV), fluctuations in transport and rate coeflicients due to the mapping are 
not observed. 

III. EXAMPLE: AN ELECTRON AVALANCHE 

The example used to illustrate the technique discussed in the previous section is 
that of determining the spatio-temporal evolution of a pulse of electrons released 
from the cathode of a gas filled chamber and subsequently influenced by a uniform 
applied electric field [ll, 121. A complete ensemble averaged description of the 
evolution of the electron pulse is in terms of the time-dependent phase-space dis- 
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FIG. 2. Flow chart for code used in simulating the evolution of an electron avalanche. 

tribution for the population of the various species of particles (electrons, ions, and 
neutral particles). For the time scales of interest here (nanoseconds), it is only 
necessary to follow the dynamics of the electrons7 i.e., ions and neutrals are 
assumed stationary. The long range coulomb interactions between the charged 
species have been taken into account via a space-charge electric field. This fieId is 
obtained by solving the Poisson equation, assuming cylindrical symmetry, with the 
electron and ion densities as the source. The Poisson algorithm has been discussed 
in detail elsewhere [ 131. A flow chart of the code we have developed is shown in 
Fig. 2. In the example, nitrogen was used as background gas. The total cross-sec- 
tions for the electron--N1 reactions used in the simulations have been obtained from 
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a number of sources [ll]. In the case of an ionizing collision, the energy of the 
secondary is assigned according to the distribution determined from experiments by 
Opal, Peterson, and Beaty [14]. 

The initial number of electrons, NO, released from the cathode ranged from 1 to 
1000. For these cases, the initial number of test-particles is equal to the actual num- 
ber of particles. The initial pulse has a delta function distribution in space, time, 
and energy. The delta function in energy is at 1 eV. The test-particles leave the 
cathode at random angles towards the anode. The properties of the initial pulse are 
an idealization of what would be expected in experiments where a focused, picose- 
cond laser is used to photo-electrically release electrons from the cathode. 

As the electrons (test-particles) emerge from the cathode> they accelerate towards 
the anode, i.e., they gain energy from the field. The electric field to density ratio 
(E/N) used in the example is 3 x 10WL5V cm’ (300 Td). The evolution of each elec- 
tron is computed as discussed in the previous section. 

In each time section, all desired quantities are calculated, The maximum length of 
a time section, ts is determined by the condition that the assembly does not grow by 
more than 3000 particles (Nt - Ni); that is, there are approximately 3000 ionizing 
collisions in a time section. At 300 Td, ts is typically chosen to vary from 0.5 psec 
for the early stages of development, to 2.5 psec, for the equilibrium phase. The 
background density of nitrogen in all simulations is 1 x 1019 cm-3. 

To compute the space-averaged energy distribution, J’(E), the particles are sam- 
pled twice during the time section and once at the end of the section. An averaged 
distribution over the section is thus obtained. The value of ts used determines the 
“coarseness” of the distribution in time. Two different widths have been used for the 
energy bins in computing the distribution; namely, 0,2 eV and 3 eV. The dis- 
tributions for the smallest bin widths contained 500 points. An example of the dis- 
tribution obtained is shown in Fig. 3 where the energy distribution, F(E), is plotted. 

FIG. 3. Evolution of the electron enemy distribution, F(&j. 
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This *‘averaged” energy distribution is used in the calculation of the rate coefficients 
at each time section. In steady state, the maximum fluctuation observed in the 
ionization rate, vi/iv, calculated from the distribution at 300 Td is 15%. The large 
error at 300 Td is due to the few particles that are being sampled at this values of 
E/N. The error in the other coefficients decreases (to a few percent) since the num- 
ber of particles sampled increases with decreasing energy treshold for a given 
process 

The mean electron energy, (C ), is computed by sampling the electron population 
at the end of each time section. In steady state, the fluctuation in the mean energy 
has been calculated to be approximately 2% for all cases. 

The center of mass of the electron assembly, ZC, the averaged squared radial 
deviation from the axis, ( R2), and the averaged squared longitudinal deviation 
from the center of mass? ((Z - ZC)’ ), are also calculated at the end of the time set- 
non. The values for the drift velocity, Vd, the transverse diffusion coefticient, DT, 
and the longitudinal diffusion coeffkient, DL, are obtained in steady state from the 
slopes of the least-squares straight line (local) fit of the ZC, (R’), and ((Z - ZC)’ > 
versus time data. respectively. The volume ionization coefficient, X, is obtained from 
the slope of the least-squares straight line (local) fit of the ZC versus H data, where !i 
is the number of electrons in the avalanche. In the region where the growth is 
exponential, the maximum percentage deviation of the data from the straight line 
approximation is approximately 1% for 300 Td. 

The evolution of some of the rate coefficients and transport parameters are 
shown in Figs. 4 and 5. Note that in the quasi-steady-state regime (i.e., before the 
influence of the space-charge field becomes significant), the fluctuation in the above 
parameter is small. This illustrates the equivalence of the assemblies before and 
after the mapping. 

At the end of a time section, the electrons and ion densities obtained from the 
Monte Carlo simulation are ?smootheC using a two-dimensional, discrete> Legen- 
dre polynomial expansion to least square approximate the densities over a local 
area (typically an array of 6 x 6 grid points). The “smoothed” densities are Ihen 
used as sources in the Poisson equation. This smoothing is only for the purpose of 
computing the space-charge electric held. The sum of this field and the applied field 
are then used to update the properties of the electrons in the next time section. The 
effect of the space-charge field on the evolution of the assembly can also be seen in 
Figs. 4 and 5. Inside the electron assembly, the space-charge kid is opposite to the 
applied field, so that the total field in this region decreases with time” This causes a 
decrease in the mean energy with time as shown in Fig. 4. The increase observed in 
the drift velocity (Fig. 4) is due to the fact that the flow of electrons near the front 
of the assembly is highly directional (mwards the anode). This is caused by the 
enhanced field at the edges of the assembly. The earliest effect of the space-charge 
field is observed on the transverse diffusion coefficient. It is never observed to have 
a region of quasi-steady-state (see Fig. 5). Since the applied radial field is zero? the 
radial space-charge field immediately influences the transverse evolution of the 
assembly. Along the applied held direction, however, the effect of the space-charge 
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FIG. 5. Evolution of diffusion coefticients. 
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lield on the longitudinal diffusion coefficient (Fig. 5) is not important, until the 
space-charge tield becomes of the order of the applied field. The longitudinal coef- 
ficient is nearly constant until this time. 

IV. CONCLUDING REMARKS 

The example given in the previous section illustrates the power of the Monte 
Carlo technique presented in Section II. With it, it is possible to simulate the 
behavior of an assembly of particles whose number is increasing with time and 
whose evolution depends on the total number of particles. This technique is easily 
implemented. The code we have written (Fig. 2 j has been run on VAX-780 mini- 
computer. The runs for the example discussed in the previous section lasted a few 
hours. 
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